63,640 research outputs found

    A new topological aspect of the arbitrary dimensional topological defects

    Full text link
    We present a new generalized topological current in terms of the order parameter field ϕ⃗\vec \phi to describe the arbitrary dimensional topological defects. By virtue of the % \phi-mapping method, we show that the topological defects are generated from the zero points of the order parameter field ϕ⃗\vec \phi, and the topological charges of these topological defects are topological quantized in terms of the Hopf indices and Brouwer degrees of ϕ\phi-mapping under the condition that the Jacobian % J(\frac \phi v)\neq 0. When J(ϕv)=0J(\frac \phi v)=0, it is shown that there exist the crucial case of branch process. Based on the implicit function theorem and the Taylor expansion, we detail the bifurcation of generalized topological current and find different directions of the bifurcation. The arbitrary dimensional topological defects are found splitting or merging at the degenerate point of field function ϕ⃗\vec \phi but the total charge of the topological defects is still unchanged.Comment: 24 pages, 10 figures, Revte

    Topological defects of N\'eel order and Kondo singlet formation for Kondo-Heisenberg model on a honeycomb lattice

    Get PDF
    Heavy fermion systems represent a prototypical setting to study magnetic quantum phase transitions. A particular focus has been on the physics of Kondo destruction, which captures quantum criticality beyond the Landau framework of order-parameter fluctuations. In this context, we study the spin one-half Kondo-Heisenberg model on a honeycomb lattice at half filling. The problem is approached from the Kondo destroyed, antiferromagnetically ordered insulating phase. We describe the local moments in terms of a coarse grained quantum non-linear sigma model, and show that the skyrmion defects of the antiferromagnetic order parameter host a number of competing order parameters. In addition to the spin Peierls, charge and current density wave order parameters, we identify for the first time Kondo singlets as the competing orders of the antiferromagnetism. We show that the antiferromagnetism and various competing singlet orders can be related to each other via generalized chiral transformations of the underlying fermions. We also show that the conduction electrons acquire a Berry phase through their coupling to the hedgehog configurations of the N\'eel order, which cancels the Berry phase of the local moments. Our results demonstrate the competition between the Kondo-singlet formation and spin-Peierls order when the antiferromagnetic order is suppressed, thereby shedding new light on the global phase diagram of heavy fermion systems at zero temperature.Comment: 14 pages, 4 figure

    Cross-talk between topological defects in different fields revealed by nematic microfluidics

    Get PDF
    Topological defects are singularities in material fields that play a vital role across a range of systems: from cosmic microwave background polarization to superconductors, and biological materials. Although topological defects and their mutual interactions have been extensively studied, little is known about the interplay between defects in different fields -- especially when they co-evolve -- within the same physical system. Here, using nematic microfluidics, we study the cross-talk of topological defects in two different material fields -- the velocity field and the molecular orientational field. Specifically, we generate hydrodynamic stagnation points of different topological charges at the center of star-shaped microfluidic junctions, which then interact with emergent topological defects in the orientational field of the nematic director. We combine experiments, and analytical and numerical calculations to demonstrate that a hydrodynamic singularity of given topological charge can nucleate a nematic defect of equal topological charge, and corroborate this by creating −1-1, −2-2 and −3-3 topological defects in 4−4-, 6−6-, and 8−8-arm junctions. Our work is an attempt toward understanding materials that are governed by distinctly multi-field topology, where disparate topology-carrying fields are coupled, and concertedly determine the material properties and response.Comment: 18 pages, 9 figure

    Semilocal Topological Defects

    Full text link
    Semilocal defects are those formed in field theories with spontaneously broken symmetries, where the vacuum manifold MM is fibred by the action of the gauge group in a non-trivial way. Studied in this paper is the simplest such class of theories, in which M≃S2N−1M\simeq S^{2N-1}, fibred by the action of a local U(1)U(1) symmetry. Despite MM having trivial homotopy groups up to π2N−2\pi_{2N-2}, this theory exhibits a fascinating variety of defects: vortices, or semilocal strings; monopoles (on which the strings terminate); and (when N=2N=2) textures, which may be stabilised by their associated magnetic field to produce a skyrmion.Comment: 28pp, DAMTP-HEP-92-2

    Scalar fields: from domain walls to nanotubes and fulerenes

    Get PDF
    In this work we review some features of topological defects in field theory models for real scalar fields. We investigate topological defects in models involving one and two or more real scalar fields. In models involving a single field we examine two different subclasses of models, which support one or more topological defects. In models involving two or more real scalar fields, we explore the presence of defects that live inside topological defects, and junctions and networks of defects. In the case of junctions of defects we investigte structures that simulate nanotubes and fulerenes. Our investigations may also be used to describe nonlinear properties of polymers, Langmuir films and optical solitons in fibers.Comment: Revtex, 10 pages, 5 figures. Talk presented at XXII Encontro Nacional de Fisica de Particulas e Campos, Sao Lourenco, MG, Brazil, October 2001; v2, 2 references adde
    • …
    corecore